If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-t^2+6t+6=0
We add all the numbers together, and all the variables
-1t^2+6t+6=0
a = -1; b = 6; c = +6;
Δ = b2-4ac
Δ = 62-4·(-1)·6
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*-1}=\frac{-6-2\sqrt{15}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*-1}=\frac{-6+2\sqrt{15}}{-2} $
| x=40+0.4x | | 25=15b | | 4*(3^x)=5^2x-1 | | 8/3+n-3/2+3=2n+8/3 | | x-0.2x=39 | | (1-3x)(x-8)=0 | | (2y-5)(4+y)=0 | | 0=(x-4)÷5 | | -4.42y+0.9=-9.070-0.433y | | Y=(x-4)÷5 | | x/144=1/2 | | 4x+2(12-x)=34 | | 2/3x^2+15=23 | | t-2/3+2t/3=2t+4/3 | | 943=3.14x(12) | | d=(16(2))^2 | | 3.8x+1+9.7x=2.6+13.3x | | d=16(2)^2 | | -4x3+12x2+15x=0 | | |x−2|=6 | | 2(x+5)=6(x+1 | | Y+6x=-5 | | 3+12x-2=5x+36 | | b-13=14 | | 2f-7=11 | | H=-16t^2+727 | | 5e+4=19 | | 11h-14=63 | | 7g+1=36 | | 9w+3=21 | | 3/x-4=5/x-1 | | 23+7x=3x+35 |